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Research paper

Influence of water soaking on the ultimate tensile strength
of polyester-based coated woven fabrics

Andrzej Ambroziak1, Paweł Kłosowski2

Abstract: This research aims to determine the influence of water-soaking on polyester-based coated
woven fabrics for ultimate tensile strength and elongation at break under uniaxial tensile tests. The
paper begins with a short survey of literature concerning the investigation of the determination of
coated woven fabric properties. The authors carried out the uniaxial tensile tests with an application of
a flat grip to establish the values of the ultimate tensile strength of groups of specimens treated with
different moisture conditions. SEM fractography is performed to determine the cross-section structures
of coated woven fabrics. The change in the mechanical properties caused by the influence of water
immersion has not been noticed in the performed investigations.
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1. Introduction
Architectural fabrics refer to structurally coated woven fabrics used to form tensile

surface structures (Fig. 1), such as canopies, membrane roofs, hanging, and pneumatic
structures [1–6]. Different types of coated woven fabrics are manufactured and used in
construction. The main differences between different types of coated woven fabrics are in
the base materials (e.g. polyester or glass threads), coatings or top coating materials (e.g.
PVC (polyvinyl chloride), PVDF (polyvinylidene fluoride) or PTFE (polytetrafluoroethy-
lene)) or differences in the manufacturing process (e.g. Precontraint technology [7, 8]).
The membrane building performance, material properties, and structural behaviours are
reviewed by [9–12].

Fig. 1. Membrane polyester structures: a) hanging roof of Forest Opera in Sopot (2006); b) spherical
tanks for fertilizers in Gdynia Harbour

The literature concerning the subject of architectural fabrics investigations is very
extensive. Performed investigations of the coated woven fabrics have shown that the me-
chanical parameters are highly influenced by temperature changes [13–15]; changes in
behaviour under uniaxial, biaxial and creep loadings [16–21]; glass threads based and
PTFE-coated woven fabrics occur a reduction in the tensile strength resulting under water-
logged [22,23]; prove degradation of the tensile strength exposed to weathering and ageing
impacts and cyclic loading [24–27]; exhibits highly material nonlinearity with identified
viscoelastic, viscoplastic behaviour [28–34]; puncture resistance strength increases with
the increase of weight percentage of fibres and initial notch significantly reduce the ultimate
strength [35–38]; the failure strength depends on the stress ratio and off-axial angle [39–42].
The investigations are also performed on: tearing behaviours and tearing strength propa-
gation mechanisms [41, 43–46], off-axis tearing properties [47, 48], achieving 3D strain
surfaces on coated woven fabrics, and refined biaxial test procedures [49, 50], modelling
multi-scale progressive damage to investigate the damage and failure behaviours [51]. The
application of the fast camera in laboratory tests aids in the visualization of the complex
composite behaviours of fabrics [52] is also developed.
The present study is aimed at the determination of the influence of water-soaking on

the ultimate tensile strength of chosen coated woven fabrics for which the base threads
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material is polyester under uniaxial tensile tests. The paper is an extension of the former
investigations on the water-soaking of coated woven fabrics [23, 53].

2. Materials and methods

For laboratory tests, the authors chose three coated woven fabrics having polyester
threads coated by PVC (polyvinyl chloride), PVDF (polyvinylidene fluoride), and cross-
linked PVDF (versatile, thermally and chemically ultrastable PVDF material [54]). The
main properties declared by the producers are collected in Table 1. The investigated coated
fabrics differ in weight, thickness, and tensile strength. Before tests, the fabrics have been
stored in the laboratory in room conditions (temperature 20–22◦C, humidity 20–50%) for
7–9 years. As declared by the producer the manufacturing process for B-type and C-type
coated fabrics is similar. The B-type and C-type coated fabrics are produced with the
technology, where the threads of the warp and weft are initially strained during the coating
process while A-type is produced without prestressing in the weft direction.

Table 1. Properties of investigated coated woven fabrics

Properties
A-type

(Valmex FR1000
type III)

B-type
(Precontrain1302S)

C-type
(Precontrain
TX30 – V)

Total Mass per Unit
Area (g/m2) 1050 1350 1500

Thickness (mm) 0.9 1.02 1.14

Tensile Strength (kN/m)
Warp
Weft

120
110

160
140

200
160

surface treatment/
top coating PVDF S2 PVDF/PVDF Crosslinked PVDF

yarn
PES

Panama Weave P 2/2
1670 Dtex

PES HT
1100/2200 Dtex

PES HT
1670/2200 Dtex

The morphology of coated woven fabric samples (virgin fabrics) was performed by
a scanning electron microscope (SEM, type TM3030 Manual Stage, model 55E-0015,
Hitachi, Tokyo, Japan). The results of the analysis were documented with the SEM images.
SEM fractography was carried out to determine the cross-section structures of coated
woven fabrics.
Before the uniaxial tensile tests were carried out the fabric specimens were cut in the

warp and weft direction from three types of base materials (virgin fabrics) and were divided
into three groups. The first group was the base material specimens. Results for this group
are denoted A, B and C regarding A-type, B-type and C-type coated fabrics. The two
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remaining groups of specimens were immersed in room-temperature water for two weeks.
The immersion period was twice longer as that taken by Asadi et al. [22] and the same as
in [23]. After two weeks they were taken out of the water. Their surface was dried using
absorbent paper. The specimens of the second group were immediately tested. The second
group is denoted as A_wet, B_wet and C_wet reference to coated fabrics A-type, B-type
and C-type tested as wet (waterlogged). The third group of fabric specimens, after two
weeks of water soaking, was left in the room conditions to dry out for the following seven
days (one week) and then tested. The last group is denoted as A_air-dried, B_air-dried and
C_air-dried concerning A-type, B-type and C-type coated fabrics subjected to waterlogging
and the process of air-drying.
The uniaxial tensile tests were conducted on the Zwick 020mechanical testingmachine.

The video extensometer control (based on the digital image correlation method) with the
base of the optical extensometer of about 50 mm of gauge distance and flat grips were used.
The specimens had 50 ± 1 mm width, and the active length (distance between grips) was
equal to 200 ± 1 mm, see Fig. 2). The total length of fabric specimens was 300 ± 1 mm.
The mechanical tests were performed according to the ISO 1421:2016 standard [55] for
the strip method, with the displacement rate of the upper grip equal to 100 mm/min. Each
type of test has been repeated at least five times. Three main groups for three chosen types
of coated fabric specimens were tested.

Fig. 2. Uniaxial laboratory tests stand

3. Laboratory test results

3.1. Results of SEM fractography

SEM micrographs of the cross-sections of the coated fabrics are shown in Figs. 3–5.
The photo of each fabric has been taken from two perpendicular directions (warp and weft)
and with two magnifications. According to the photos, some differences in cross-sections
according to the fabric producer can be observed. The reason can be the manufacturing
process, especially the prestressing of the threads during covering them with the coating
layers. The fabric in Fig. 3 was prestressed during the coating process in the warp direction
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Fig. 3. SEM microscopic images – A-type fabric

Fig. 4. SEM microscopic images – B-type fabric
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only, while two other fabrics have been prestressed in both directions. The cross-sections
of all fabrics are dense but porous. There are many micropores and continuous bubbles
in the porous structure, most of all in A-type fabric, see Fig. 3. When the coating layer
is damaged mainly due to weather conditions (temperature and ultraviolet light have the
biggest influence), water can penetrate the threads changing their working conditions,
and consequently the fabric mechanical properties. According to the SEM analysis, the
microstructure of coated fabrics is anisotropic.

Fig. 5. SEM microscopic images – C-type fabric

3.2. Results of uniaxial tensile tests

The results of the uniaxial tensile tests are presented in the form of the stress-strain
curves in Figs. 6–8 for the A-type, B-type and C-type coated fabrics, respectively. The first
denotation used on figures concerns the type of fabrics (A, B, or C). The second part of
denotation O and W refers to warp and weft directions respectively.
The shape of the stress-strain curves is typical for the investigated type of architectural

fabrics with polyester threads [8]. The A-type fabric exhibits more different responses for
warp and weft directions while the response of warp and weft directions under uniaxial
loads for the B-type and C-type coated fabrics are very similar due to the initial prestressing
of warp and weft threads during the coating process.
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Fig. 6. Uniaxial tensile test results – A-type fabric

Fig. 7. Uniaxial tensile test results – B-type fabric

Fig. 8. Uniaxial tensile test results – C-type fabric
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3.3. Elongation at break and tensile strength

Based on the performed uniaxial tensile tests the elongation at break (rupture strain)
and the tensile strength for each tested specimen is determined and collected in Tables 2–
4 for the A-type fabric, in Tables 5–7 for the B-type fabric, and in Tables 8–10 for the

Table 2. Elongation at break and tensile strength – base specimens A-type fabric

Specimens
No.

Warp Weft
Rupture Strain Tensile Strength Rupture Strain Tensile Strength

– kN/m – kN/m
1 0.1907 120.37 0.2630 93.91
2 0.1892 126.76 0.2449 92.36
3 0.1994 125.20 0.2521 94.94
4 0.1997 130.93 0.2698 99.43
5 0.1986 123.90 0.2493 89.44

Table 3. Elongation at break and tensile strength – wet specimens A-type fabric

Specimens
No.

Warp Weft
Rupture Strain Tensile Strength Rupture Strain Tensile Strength

– kN/m – kN/m
1 * 111.83 0.2392 84.9501
2 0.1858 114.20 0.2351 73.7049
3 0.1948 120.07 0.2428 88.8322
4 0.1914 114.63 0.2510 90.7116
5 0.2002 121.26 0.2221 68.2138

* – value missed due to experiment error

Table 4. Elongation at break and tensile strength – air-dried A-type fabric

Specimens
No.

Warp Weft
Rupture Strain Tensile Strength Rupture Strain Tensile Strength

– kN/m – kN/m
1 0.1919 119.53 0.2415 83.12
2 0.1889 120.66 0.2365 75.66
3 0.2004 128.24 0.2336 77.23
4 0.2023 130.59 0.2270 71.91
5 0.1993 124.31 0.2475 93.04
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C-type fabric. The Shapiro-Wilk test [56] for all calculated values was performed to be
sure the normal distribution of obtained results (value to reject 𝑃 = 0.05). All investigated
quantities fulfil the criterion of normality. The mean values of the calculated properties and
their standard deviation are presented in Table 11. The mean values of the tensile strength

Table 5. Elongation at break and tensile strength – base specimens B-type fabric

Specimens
No.

Warp Weft
Rupture Strain Tensile Strength Rupture Strain Tensile Strength

– kN/m – kN/m

1 0.2124 163.74 0.1839 128.6158

2 0.2095 161.06 0.1817 127.0372

3 0.2219 165.58 0.1818 128.7660

4 0.2136 156.62 0.1943 126.3563

5 0.1966 147.41 0.1867 127.2624

Table 6. Elongation at break and tensile strength – wet specimens B-type fabric

Specimens
No.

Warp Weft
Rupture Strain Tensile Strength Rupture Strain Tensile Strength

– kN/m – kN/m

1 0.2221 163.77 0.1823 127.65

2 0.2177 156.51 0.1773 121.12

3 0.2016 156.41 0.1787 123.13

4 0.2027 150.62 0.1786 119.96

5 0.2012 148.41 0.1708 121.66

Table 7. Elongation at break and tensile strength – air-dried B-type fabric

Specimens
No.

Warp Weft
Rupture Strain Tensile Strength Rupture Strain Tensile Strength

– kN/m – kN/m

1 0.1985 151.2454 0.1750 123.9437

2 0.2223 162.0611 0.1764 123.0524

3 0.2056 161.5406 0.1721 117.2304

4 0.2142 160.4520 0.1710 119.1112

5 0.2112 162.0700 0.1696 120.5930
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obtained for base coating fabric material during tests are generally higher by 0–5% for warp
direction and 10–15% lower for weft direction than specified in Table 1. This difference
may be due to the application of the flat grips and the age of the fabrics.

Table 8. Elongation at break and tensile strength – base specimens C-type fabric

Specimens
No.

Warp Weft
Rupture Strain Tensile Strength Rupture Strain Tensile Strength

– kN/m – kN/m

1 0.2378 209.75 0.2005 135.30

2 0.2310 208.14 0.2028 133.67

3 0.2436 218.06 0.1996 137.26

4 0.2380 209.42 0.2037 137.87

5 0.2290 203.78 0.2108 135.97

Table 9. Elongation at break and tensile strength – wet specimens C-type fabric

Specimens
No.

Warp Weft
Rupture Strain Tensile Strength Rupture Strain Tensile Strength

– kN/m – kN/m

1 0.2362 205.64 0.2043 139.6789

2 0.2360 209.31 0.1930 137.5461

3 0.2237 213.15 0.1985 136.4190

4 0.2280 211.25 0.2022 138.8742

5 0.2316 209.55 0.2134 141.4161

Table 10. Elongation at break and tensile strength – air-dried C-type fabric

Specimens
No.

Warp Weft
Rupture Strain Tensile Strength Rupture Strain Tensile Strength

– kN/m – kN/m

1 0.2271 215.788 0.2038 136.1117

2 0.2382 208.64 0.2010 139.9382

3 0.2320 215.69 0.2009 141.7092

4 0.2343 206.69 0.2061 140.5940

5 0.2271 209.11 0.2000 142.2226
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Table 11. Mean elongation at break and tensile strength results

Fabric
type Test type

Warp Weft
Rupture Strain

[–]
Tensile Strength
[kN/m]

Rupture Strain
[–]

Tensile Strength
[kN/m]

A-type
dry 0.1955 ± 0.0051 125.4 ± 3.8 0.2560 ± 0.0103 94.1 ± 3.7
wet 0.1931 ± 0.0060 116.4 ± 4.1 0.2380 ± 0.0107 81.3 ± 9.8

air-dried 0.1966 ± 0.0058 124.7 ± 4.8 0.2372 ± 0.0078 80.2 ± 8.2

B-type
dry 0.2108 ± 0.0092 158.9 ± 2.0 0.1857 ± 0.0052 127.6 ± 1.0
wet 0.2091 ± 0.0100 155.1 ± 6.0 0.1775 ± 0.0042 122.7 ± 3.0

air-dried 0.2104 ± 0.0090 159.5 ± 4.6 0.1728 ± 0.0028 120.8 ± 2.8

C-type
dry 0.2359 ± 0.0059 209.8 ± 5.2 0.2035 ± 0.0044 136.0 ± 1.6
wet 0.2311 ± 0.0054 209.8 ± 2.8 0.2033 ± 0.0076 138.8 ± 1.9

air-dried 0.2318 ± 0.0048 211.2 ± 4.2 0.2024 ± 0.0025 140.1 ± 2.4

4. Discussion

The one-way analysis of variance (ANOVA [57, 58]) was applied to check whether
the obtained differences of material properties obtained in investigated conditions (based
material, wet and air-dried) are important from the statistical point of view. The ANOVA
analysis required checking of the normal distribution by the Shapiro-Wilk test (what was
done before), and the equal variance e.g. by the Brown-Forsythe test [59] (value to reject
𝑃 = 0.05). The equal value of the variance for all groups was also obtained.
In Table 12 the results of the testing hypothesis of significant differences in group

results are presented. If the difference is statistically important it is indicated in Table 12
by the word YES, otherwise the word NO is used. The obtained values of the 𝑃 parameter
in the Bonferroni t-test analysis [60] are also given.
Generally, it can be concluded that soaking of the fabrics has minor meaning in the

warp direction (except for tensile strength for A-type fabric). For the weft direction, the
drying process does not influence the change of material properties (the properties of base
and dried material are similar). The wet fabric of A and B types changes the value of the
rupture strain as well as the tensile strength. They are lower than for the base and dried
material. Almost no change in the fabric’s stiffness properties for warp and weft directions
in all texts has been observed (see Figs. 3–5).
A similar investigation has been performed for two types of architectural fabrics with

glass threads and PTFE coating. The results of this research have been presented in [23].
Now the comparison of the soaking properties of both groups of fabrics can be made. It
can be concluded that the stiffness of the glass-based fabrics is more sensitive to humidity
conditions. Both families of fabrics (polyester and glass) exhibit some decrease of the
tensile strength in the weft direction in water immersion conditions, also some reduction of
the rupture strain has been noticed. In the warp direction in water influence conditions, the
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Table 12. Results of ANOVA analysis

Warp Weft

Rupture strain Tensile Strength Rupture strain Tensile Strength

A-type

base/wet NO (𝑃 = 0.654) YES (𝑃 = 0.017) YES (𝑃 = 0.039) NO (𝑃 = 0.068)

base/dried NO (𝑃 = 0.654) NO (𝑃 = 1.000) YES (𝑃 = 0.031) YES (𝑃 = 0.045)

dried/wet NO (𝑃 = 0.654) YES (𝑃 = 0.029) NO (𝑃 = 1.000) NO (𝑃 = 1.000)

B-type

base/wet NO (𝑃 = 0.956) NO (𝑃 = 0.493) YES (𝑃 = 0.029) YES (𝑃 = 0.023)

base/dried NO (𝑃 = 0.956) NO (𝑃 = 0.493) YES (𝑃 = 0.001) YES (𝑃 = 0.002)

dried/wet NO (𝑃 = 0.956) NO (𝑃 = 0.493) NO (𝑃 = 0.304) NO (𝑃 = 0.706)

C-type

base/wet NO (𝑃 = 0.346) NO (𝑃 = 0.837) NO (𝑃 = 0.920) NO (𝑃 = 0.153)

base/dried NO (𝑃 = 0.346) NO (𝑃 = 0.837) NO (𝑃 = 0.920) YES (𝑃 = 0.230)

dried/wet NO (𝑃 = 0.346) NO (𝑃 = 0.837) NO (𝑃 = 0.920) NO (𝑃 = 0.959)

tensile strength change has been obtained for the polyester A-type fabric only. Nevertheless,
after drying also for this fabric the tensile strength resumes to the value close to the original
one. The behaviour of the glass-based fabrics in the warp direction is more complex. After
the drying process, their tensile strength is reduced up to 10–14% compared with the
virgin one.

5. Conclusion
In the present paper, the investigation of the influence of water-soaking on the ultimate

tensile strength of chosen polyester-based coated woven fabrics under uniaxial tensile tests
is performed. Based on performed investigation the following conclusions may be drawn:
– A significant reduction in the tensile strength for investigated coated woven fabrics
resulting from the performed test was not observed.

– A significant difference in the elongation at break for coated fabric under waterlogged
was not assigned.

– As the fabrics were 7–9 years old and in the current research the flat grips have been
used, the obtained values of the tensile strength can be slightly reduced in comparison
to the producer-declared values given in Table 1. Nevertheless, the flat grips usage
does not influence the comparison between groups for specimens treated in different
soaking conditions.

The present study confirmed the good resistance of the investigated fabrics to humidity
conditions. The mechanical properties are similar even after more than 7 years of storage.
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The behaviour of the fabrics in the exploitation conditions has been the subject of the
ageing experiments presented in [26, 61, 62]. The obtained results encourage the authors
to continue the extended research directed towards precisely understanding the influence
of water-soaking on the different types of coated woven fabric’s behaviour after different
levels of loading and also after soaking in acid water or after atmospheric environmental
conditions (eg. UV exposure or frost).
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Wpływ wytrzymałości na rozciąganie tkanin powlekanych na bazie
poliestru w warunkach moczenia w wodzie

Słowa kluczowe: tkaniny techniczne, poliestrowe tkaniny powlekane, materiały konstrukcyjne, wła-
ściwości mechaniczne, testy jednoosiowego rozciagania

Streszczenie:

Niniejsze badania mają na celu określenie wpływu nasiąkania wodą na poliestrowe tkaniny po-
wlekane na wytrzymałość na rozciąganie i wydłużenie przy zerwaniu w próbach jednoosiowego
rozciągania. Artykuł rozpoczyna się od krótkiego przeglądu literatury dotyczącej badań nad właści-
wościami tkanin technicznych. Autorzy przeprowadzili próby rozciągania jednoosiowego z użyciem
szczęk płaskich w celu wyznaczenia wartości wytrzymałości na rozciąganie grup próbek poddanych
działaniu różnych warunków wilgotnościowych. Wykonano także fraktografie SEM w celu okre-
ślenia struktury przekrojowej tkanin powlekanych. W przeprowadzonych badaniach nie zauważono
zmiany właściwości mechanicznych pod wpływem zanurzenia w wodzie.
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